Part Number Hot Search : 
1210E NACE15M2 STP16 1204C LN145 B18T1 364721 364721
Product Description
Full Text Search
 

To Download BTS441R Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 BTS 441 R
Smart Highside Power Switch One Channel: 20m Status Feedback
Product Summary
On-state Resistance Operating Voltage Nominal load current Current limitation RON Vbb(on) IL(ISO) IL(lim) 20m 4.75 ... 41V 21A 65A
Package
TO-263-5-2 TO-220-5-12
SMD
Straight
General Description
* * N channel vertical power FET with charge pump, ground referenced CMOS compatible input, monolithically integrated in Smart SIPMOS(R) technology. Providing embedded protective functions.
Application
* * * * C compatible power switch for 5V, 12 V and 24 V DC applications All types of resistive, inductive and capacitve loads Most suitable for loads with high inrush currents, so as lamps Replaces electromechanical relays, fuses and discrete circuits
Basic Funktions
* * * * * Very low standby current Optimized static electromagnetic compatibility (EMC) C and CMOS compatible Fast demagnetization of inductive loads Stable behaviour at undervoltage
Protection Functions
* * * * * * * * Short circuit protection Current limitation Overload protection Thermal shutdown Overvoltage protection (including load dump) with external GND-resistor Reverse battery protection with external GND-resistor Loss of ground and loss of Vbb protection Electrostatic discharge (ESD) protection
Vbb
IN ST
Logic with protection functions
OUT Load
Diagnostic Function
* * * Diagnostic feedback with open drain output Open load detection in OFF-state Feedback of thermal shutdown in ON-state
PROFET GND
Infineon Technologies AG
1
2003-Oct-01
BTS 441 R
Functional diagram
overvoltage protection internal voltage supply logic
gate control + charge pump
current limit
VBB
clamp for inductive load OUT
IN ESD ST GND
temperature sensor Open load detection LOAD
PROFET
Pin Definitions and Functions Pin 1 2 3 4 5 Tab Symbol GND IN Vbb ST OUT Vbb Function Logic ground Input, activates the power switch in case of logical high signal Positive power supply voltage The tab is shorted to pin 3 Diagnostic feedback, low on failure Output to the load Positive power supply voltage The tab is shorted to pin 3
Pin configuration (top view)
Tab = VBB
1
2
(3)
4
5
GND IN
ST OUT
Infineon Technologies AG
2
2003-Oct-01
BTS 441 R
Maximum Ratings at Tj = 25 C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 4) Supply voltage for full short circuit protection Tj Start=-40 ...+150C Load dump protection1) VLoadDump = VA + Vs, VA = 13.5 V RI2)= 2 , RL= 0,5 , td= 200 ms, IN= low or high Load current (Short-circuit current, see page 5) Operating temperature range Storage temperature range Power dissipation (DC) ; TC25C Maximal switchable inductance, single pulse Vbb = 12V, Tj,start = 150C, TC = 150C const. (see diagram, p.7) IL(ISO) = 21 A, RL= 0 : E4)AS=0.7J: Electrostatic discharge capability (ESD) IN: (Human Body Model) ST: Out to all other pins shorted:
acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993; R=1.5k; C=100pF
Symbol Vbb Vbb VLoad dump3) IL Tj Tstg Ptot ZL VESD
Values 43 34 60 self-limited -40 ...+150 -55 ...+150 125 2.1 1.0 4.0 8.0 -10 ... +16 2.0 5.0 1 75 33
Unit V V V A C W mH kV
Input voltage (DC) Current through input pin (DC) Current through status pin (DC)
see internal circuit diagrams page 7
VIN IIN IST RthJC RthJA
V mA
Thermal resistance
chip - case: junction - ambient (free air): SMD version, device on pcb5):
K/W
1) 2) 3) 4) 5)
Supply voltages higher than Vbb(AZ) require an external current limit for the GND pin, e.g. with a 150 resistor in the GND connection. A resistor for the protection of the input is integrated. RI = internal resistance of the load dump test pulse generator VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 EAS is the maximum inductive switch off energy Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70m thick) copper area for Vbb connection. PCB is vertical without blown air.
Infineon Technologies AG
3
2003-Oct-01
BTS 441 R Electrical Characteristics
Parameter and Conditions
at Tj =-40...+150C, Vbb = 12 V unless otherwise specified
Symbol
Values min typ max
Unit
Load Switching Capabilities and Characteristics On-state resistance (Vbb (pin3) to OUT (pin5)); IL = 2 A Vbb7V: Tj=25 C: RON Tj=150 C:
see diagram page 9
--
15 28 21 -90 110 ---
20 37 -2 200 250 1 1
m
Nominal load current (pin 3 to 5) `ISO 10483-1, 6.7:VON=0.5V, TC=85C Output current (pin 5) while GND disconnected or GND pulled up6), Vbb=30 V, VIN= 0,
see diagram page 7
IL(ISO) IL(GNDhigh)
17 -40 40 0.1 0.1
A mA s V/s V/s
Turn-on time IN Turn-off time IN RL = 12 , Slew rate on 10 to 30% VOUT, RL = 12 , Slew rate off 70 to 40% VOUT, RL = 12 , Operating Parameters Operating voltage
to 90% VOUT: ton to 10% VOUT: toff dV /dton -dV/dtoff
Tj =-40C Vbb(on) Tj =+25C Tj =+105C6) Tj =+150C Overvoltage protection7) Tj =-40C: Vbb(AZ) I bb = 40 mA Tj =+25...+150C: Standby current (pin 3) 8) Tj=-40...+25C: Ibb(off) Tj=+105C6): VIN=0 see diagram page 9 Tj=+150C: IL(off) Off-State output current (included in Ibb(off)) VIN=0 Operating current (Pin 1)9), VIN=5 V, IGND
4.75 4.75 4.75 5.0 41 43 ------
-----47 5 --1.5 2
41 43 43 43 -52 10 10 25 10 4
V
V A A mA
6) 7) 8) 9)
not subject to production test, specified by design see also VON(CL) in table of protection functions and circuit diagram page 7 Measured with load, typ. 40 A when no load in off Add IST, if IST > 0, add IIN, if VIN>5.5 V
Infineon Technologies AG
4
2003-Oct-01
BTS 441 R
Parameter and Conditions
at Tj =-40...+150C, Vbb = 12 V unless otherwise specified
Symbol
Values min typ max
Unit
Protection Functions10) Current limit (pin 3 to 5)
(see timing diagrams, page 9)
Repetitive short circuit current limit Tj = Tjt (see timing diagrams, page 10) Thermal shutdown time11)12)
(see timing diagram on page 10)
Tj =-40C: IL(lim) Tj =25C: =+150C: Tj IL(SCr) Tj,start =25C: Toff(SC)
;Tj =-40C: Tj=25..150C: VON(CL) Tjt
--40 --41 43 150 ----
-65 -55 14 -47 -10 -540
85 -----52 --32 --
A
A ms V C K V mV
Output clamp (inductive load switch off)
at VOUT = Vbb - VON(CL), IL= 40 mA
Thermal overload trip temperature Thermal hysteresis Tjt Reverse battery (pin 3 to 1) 13) -Vbb Reverse battery voltage drop (VOUT > Vbb) -VON(rev) IL = -2A Tj =+150C:
10)
Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. 11) not subject to production test, specified by design 12) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70m thick) copper area for V bb connection. PCB is vertical without blown air. 13) Requires 150 resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 1 and circuit page 7).
Infineon Technologies AG
5
2003-Oct-01
BTS 441 R
Parameter and Conditions
at Tj =-40...+150C, Vbb = 12 V unless otherwise specified
Symbol
Values min typ max
Unit
Diagnostic Characteristics Open load detection voltage14)
V OUT(OL)1
2
3
4
V
Input and Status Feedback15) Input resistance see circuit page 7 Input turn-on threshold voltage Input turn-off threshold voltage Input threshold hysteresis Off state input current (pin 2) VIN = 0.4 V: On state input current (pin 2) VIN = 5 V: Delay time for status with open load after switch off (see timing diagrams, page 11), Status output (open drain) Zener limit voltage IST = +1.6 mA: ST low voltage IST = +1.6 mA::
RI VIN(T+) VIN(T-) VIN(T) IIN(off) IIN(on) tST delay
2.5 1.2 0.8 -1 4.5 --
3.8 --0.3 -12 --
6.5 2.2 --15 24 500
k V V V A A s
VST(high) VST(low)
5.4 --
6.1 --
-0.4
V
Truth Table
IN Normal operation Open load Short circuit to Vbb Overtemperature L H L H L H L H OUT L H Z H H H L L ST H H L16) H L H H L
L = "Low" Level H = "High" Level
Z = high impedance, potential depends on external circuit Status signal valid after the time delay shown in the timing diagrams
14) 15)
External pull up resistor required for open load detection in off state If a ground resistor RGND is used, add the voltage drop across this resistor. 16) L, if potential at the Output exceeds the OpenLoad detection voltage
Infineon Technologies AG
6
2003-Oct-01
BTS 441 R
Terms
V Ibb bb I IN 2 V IN I ST VST 4 ST GND 1 R GND IGND IN Leadframe, 3 Vbb IL PROFET OUT 5 VON
R ST ST
V Z1
Overvolt. and reverse batt. protection
+ 5V + Vbb V IN
R ST RI Logic
Z2
OUT
PROFET
GND
VOUT
R GND
Signal GND
R Load
Load GND
Input circuit (ESD protection)
R IN I
VZ1 = 6.1 V typ., VZ2 = 47 V typ., RGND = 150 , RST= 15 k, RI= 3.5 k typ. In case of reverse battery the load current has to be limited by the load. Temperature protection is not active
Open-load detection
ESD-ZD I GND I I
OFF-state diagnostic condition: Open Load, if VOUT > 3 V typ.; IN low
V
The use of ESD zener diodes as voltage clamp at DC conditions is not recommended.
bb
Status output
+5V
R EXT
OFF
V OUT
R ST(ON)
ST
Logic unit
Open load detection
GND
ESDZD
Signal GND
ESD-Zener diode: 6.1 V typ., max 5.0 mA; RST(ON) < 375 at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).
GND disconnect
Inductive and overvoltage output clamp
+ V bb V Z
IN
Vbb PROFET OUT
ST
V
ON
GND V bb V IN V ST V GND
OUT GND
PROFET
Any kind of load. In case of Input=high is VOUT VIN - VIN(T+) .
VON clamped to 47 V typ.
Infineon Technologies AG
7
2003-Oct-01
BTS 441 R
Inductive load switch-off energy dissipation GND disconnect with GND pull up
E bb E AS
IN Vbb
IN
PROFET OUT
Vbb PROFET OUT
ELoad
ST GND
=
ST GND ZL
V
V bb
IN ST
V
V
GND
{
R L
L
EL
ER
Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND > 0, no VST = low signal available.
Energy stored in load inductance: EL = 1/2*L*I L While demagnetizing load inductance, the energy dissipated in PROFET is EAS= Ebb + EL - ER= VON(CL)*iL(t) dt,
2
Vbb disconnect with charged inductive load
high
IN
Vbb PROFET OUT
with an approximate solution for RL > 0 : EAS= IL* L (V + |VOUT(CL)|) 2*RL bb
ln (1+ |V
IL*RL
OUT(CL)|
)
ST GND
Maximum allowable load inductance for a single switch off
L = f (IL ); Tj,start = 150C, Vbb = 12 V, RL = 0 L [mH]
1000
V
bb
For inductive load currents up to the limits defined by ZL (max. ratings and diagram on page 8) each switch is protected against loss of Vbb. Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load all the load current flows through the GND connection.
100
10
1
0.1 0 5 10 15 20 25 30 35
IL [A]
Infineon Technologies AG
Page 8
2003-Oct-01
BTS 441 R
Typ. on-state resistance
RON = f (Vbb,Tj ); IL = 2 A, IN = high RON [m]
40 35 30 25 20 15 10 5 3 5 7 9 30 40
Vbb [V]
Tj = 150C
25C -40C
Typ. standby current
Ibb(off) = f (Tj ); Vbb = 9...34 V, IN1,2 = low Ibb(off) [A]
20
15
10
5
0 -50
0
50
100
150
200
Tj [C]
Infineon Technologies AG
Page 9
2003-Oct-01
BTS 441 R
Timing diagrams
Figure 1a: Vbb turn on:
IN
IN
Figure 2b: Switching a lamp,
V bb
ST
V
OUT
V
OUT
ST open drain t
I
L
t
proper turn on under all conditions
Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition:
Figure 3a: Short circuit shut down by overtemperature, reset by cooling
IN
IN
other channel: normal operation
VOUT
90% t on dV/dton 10% t dV/dtoff
I
L
I
off
L(lim) I L(SCr)
IL
t ST off(SC)
t
t
Heating up may require several milliseconds, depending on external conditions
Infineon Technologies AG
10
2003-Oct-01
BTS 441 R
Figure 4a: Overtemperature: Reset if Tj IN
ST
V
OUT
T
J
t
Figure 5a: Open load: detection in OFF-state, turn on/off to open load
IN1 toff
VOUT1
I L1
tST delay ST
tST delay. = 500s Open load detection requires an external pull up resistor between OUT and VBB
Infineon Technologies AG
11
2003-Oct-01
BTS 441 R
Package and Ordering Code
All dimensions in mm
SMD: P-TO263-5-2
Sales code Ordering code:
10 0.2 9.8 0.15 A 8.5 1)
(tape&reel) BTS441R G Q67060-S6118
4.4 1.27 0.1 B 0.1 2.4
Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 Munchen (c) Infineon Technologies AG 2001 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer.
9.25 0.2
10.3
0.05
(15)
1.3 0.3
8 1)
0...0.15 5x0.8 0.1 4x1.7
4.7 0.5
2.7 0.3
0.5 0.1
Information
8 max.
0.25
M
AB
0.1
1)
Typical All metal surfaces tin plated, except area of cut.
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings
Straight: P-TO220-5-12
Sales code Ordering code: BTS441R S Q67060-S6119
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in lifesupport devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
10 0.2 9.8 0.15 8.5 1) 3.7 -0.15
A B 4.4 1.27 0.1
15.650.3
1)
170.3
2.8 0.2
13.4
0.05
110.5
C 0...0.15 1.7
13 0.5
6x 0.8 0.1 0.25
M
0.5 0.1 2.4 ABC
1)
Typical All metal surfaces tin plated, except area of cut.
Infineon Technologies AG
9.25 0.2
12
2003-Oct-01


▲Up To Search▲   

 
Price & Availability of BTS441R

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X